Hydrolysis Kinetics of Cr(III) and Co(III) Complexes

for the $(C_6H_5)_2M(mnt)_2^{2-}$ complexes is a reasonable proposal

The tin-carbon asymmetric stretching mode in the $(CH_3)_2$ - $Sn(mnt)_2^{2-}$ ion is found at 531 cm⁻¹. The region where the symmetric stretching mode would occur (if present) is masked by ligand absorptions.¹⁰ The value of the methyltin coupling constant is closer to the value for a cis disposition of methyl groups²⁰ than that observed for a complex exhibiting the trans configuration.³² Therefore, as a tentative proposal, a distorted cis geometry is preferred for the $(CH_3)_2 Sn(mnt)_2^2$ moiety. Further investigations on the stereochemistry of these complexes is in progress.

Registry No. (CH₃)₂Sn(mnt), 16257-02-6; (C₆H₅)₂Sn-

(32) M. M. McGrady and R. S. Tobias, J. Amer. Chem. Soc., 87, 1909 (1965).

Inorganic Chemistry, Vol. 12, No. 3, 1973 627

(mnt), 17250-19-0; (C₆H₅)₂Pb(mnt), 37862-08-1; [(C₂H₅)₄- $N_{2}Sn(mnt)_{2}(CH_{3})_{2}$, 37837-96-0; $[(C_{2}H_{5})_{4}N]_{2}Sn(mnt)_{2}$ - $(C_6H_5)_2$, 37837-97-1; $[(C_2H_5)N]_2Pb(mnt)_2$, 37862-09-2; $[(C_4H_9)_4N]_2Pb(mnt)_2(C_6H_5)_2, 37837-98-2; [(C_4H_9)_4N]_2$ $Sn(mnt)_2(C_6H_5)_2$, 37837-99-3; $[(C_6H_5)_4A_5]Sn(mnt)(CH_3)_2$ -Cl, 37837-95-9; [(C₆H₅)₄As]₂Sn(mnt)₂(CH₃)₂, 37953-08-5; $[(C_6H_5)_4A_8]Sn(mnt)(C_6H_5)_2C_1, 37838-00-9; [(C_6H_5)_4A_8]$ - $Pb(mnt)_2(C_6H_5)_2Cl, 37838-55-4; [(C_6H_5)_4As]_2Pb(mnt)_2,$ 37862-10-5; [(C₆H₅)₄As]Sn(mnt)(CH₃)₂Br, 37838-01-0; $[(C_6H_5)_4As]Sn(mnt)(CH_3)_2I, 37838-02-1; [(C_6H_5)_4P]Sn-$ (mnt)(CH₃)₂Cl, 37838-03-2.

Acknowledgments. We thank Drs. D. B. Brown and J. H. Waters for helpful discussions and M & T Chemicals for the gift of dimethyltin dichloride. The assistance of Dr. E. Yamauchi of JEOL U.S.A. Inc. in the evaluation of the mass spectra is also gratefully acknowledged.

Contribution from the Department of Chemistry, University of Canterbury, Christchurch, New Zealand

Hydrolysis Kinetics of the trans-Dichloro(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) and -cobalt(III) Cations in Acidic Aqueous Solution

M. C. COULDWELL, D. A. HOUSE,* and H. K. J. POWELL

Received July 17, 1972

The syntheses of trans-[Cr(en)(tmd)Cl₂]ClO₄ and trans-[Cr(en)(tmd)(OH)(OH₂)](ClO₄)₂ and a simplified synthesis of The syntheses of *trans*-[Ci(en)(thid)Cl₂][CiO₄ and *trans*-[Ci(en)(thid)(Or)(Or)(CiO₄)₂ and simplified synthesis of trans-[Co(en)(tmd)Cl₂]X (X = Cl·H₂O, ClO₄) are described. From these, the cations trans-Cr(en)(tmd)Cl₂⁺, trans-Cr(en)(tmd)Cl₂⁺, trans-Cr(en)(tmd)(OH₂)₂³⁺, trans-Co(en)(tmd)(OH₂)₂³⁺, trans-Co(en)(tmd)(OH₂)₂³ $deg^{-1} mol^{-1} = -3.6 \pm 0.5, +5.1 \pm 0.5$, respectively. The first-order halide release rate constants and kinetic parameters for trans- and cis-M(en)(tmd)(OH₂)Cl²⁺ (\dot{M} = Cr, Co, respectively) in 1.0 F HNO₃ at 25.0° are (units as above) 10⁵ k = $0.31 \pm 0.05, 10.3 \pm 0.2; E_a = 21.9 \pm 1, 18.8 \pm 0.5; \log PZ = 10.54, 9.81; \Delta S^{\pm}_{298} = -12.3 \pm 2, -15.7 \pm 1, respectively.$ The trans-Cr(en)(tmd)(OH₂)Cl²⁺ cation also hydrolyzes via Cr-N bond rupture, and Cr(tmd)(OH₂)4³⁺ has been isolated as the major decomposition product.

Introduction

As part of a program to investigate the acid hydrolysis of some analogous Cr(III) and Co(III) complexes,¹ we have studied the rate of halide release and mode of decomposition of the trans-M(en)(tmd) Cl_2^+ cations² (M = Cr, Co) in acid solution. The rate constants and kinetic parameters allow a comparison with similar data for the trans- $M(AA)_2$ - Cl_2^+ (M = Cr, Co; AA = en, pn, tmd) systems.

Experimental Section

1,2-Diaminoethane (ethylenediamine) was obtained from Fluka AG Laboratories and 1,3-diaminopropane (trimethylenediamine) from Aldrich Chemical Co.; both were used without further purification. All other chemicals were of reagent grade quality. The ionexchange material was Zeo-Karb 225, SRC-6 cation-exchange resin in the Na^+ form (52-100 mesh). The dichloro cations were isolated using 6×1 cm columns cooled by a jacket of circulating ice water, and all others were isolated using a 10×1 cm tap water cooled column. The preparation and analyses of the cationic complexes

(1) M. C. Couldwell and D. A. House, Inorg. Chem., 11, 2024

(1972), and references cited therein. (2) Abbreviations used: en, $NH_2(CH_2)_2NH_2$; pn, $NH_2CH(CH_3)-CH_2NH_2$; tmd, $NH_2(CH_2)_3NH_2$; DMSO, dimethyl sulfoxide.

were repeated at least three times to check the reproducibility of the ion-exchange separations and the visible absorption spectral parameters.

Caution/ Although we have experienced no difficulties with the perchlorate salts of the complexes mentioned herein, these complexes should be treated as potentially explosive and handled with care.

trans-Dichloro(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Perchlorate. This salt was obtained using a modification of the preparation used for trans-[Cr(tmd)₂Cl₂]ClO₄.^{1,3} A solution of green $CrCl_3 \cdot 6H_2O(16.2 \text{ g})$ in DMSO² (75 ml) was boiled for 10 min. An equimolar mixture of the diamines (9.3 ml) in DMSO (45 ml) was added to the hot solution and boiling was continued for a further 2 min. After cooling to 60° , the dull green solution was poured into 900 ml of well-stirred acetone. The purple precipitate that deposited was filtered and washed with acetone (three 50-ml portions), and the still damp solid was suspended in HCl (60 ml, 12 F). This suspension was heated on a steam bath for 10 min, when $HClO_4$ (30 ml, 60%) was added. The solution was cooled slowly and the green crystals that deposited overnight were collected, washed with 2-propanol and then ether, and air-dried. The mother liquors were returned to the steam bath for 15 min. HCl (15 ml, 12 F) was added and the solution was cooled slowly. This procedure was repeated several times to give either green or purple crystals. The

(3) D. A. House, Inorg. Nucl. Chem. Lett., 6, 741 (1970).

total yield was 6.5 g or 29%. Microscopic examination of all the crystal crops showed them to be mixtures. Those containing the bulk of the green product were recrystallized from hot 0.1 *F* HCl by the addition of equal volumes of 12 *F* HCl and 60% HClO₄. Green crystals slowly deposited leaving a red solution and these were collected, washed, and dried as above. *Anal.* Calcd for [Cr(en)-(tmd)Cl_2]ClO₄: C, 16.83; H, 5.05; N, 15.70; Cr, 14.59; ligand Cl, 19.91. Found: C, 17.37; H, 5.06; N, 15.28; Cr, 14.70; ligand Cl, 19.99.

The purple material obtained was cis-[Cr(en)₂Cl₁]Cl·H₂O. *Anal.* Calcd for [Cr(en)₂Cl₂]Cl·H₂O: C, 16.19; H, 6.07; N, 18.90; Cr, 17.54; Cl, 35.92. Found: C, 17.71; H, 5.95; N, 19.48; Cr, 16.60; Cl, 34.90.

trans-Hydroxoaquo(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Perchlorate. A suspension of trans-[Cr(en)(tmd)-Cl₂]ClO₄ (1.1 g) in water (10 ml) containing pyridine (4 ml) was heated on a steam bath for 15 min to form a red-brown solution. NaClO₄ H₂O (2.5 g) was added and the orange-red crystals (0.6 g, 46%) that deposited from the ice-cooled solution were collected, washed with 2-propanol and ether, and air-dried. Anal. Calcd for [Cr(en)(tmd)(OH₂)(OH)](ClO₄)₂: C, 14.28; H, 5.00; N, 13.33; Cr, 12.38. Found: C, 15.53; H, 5.29; N, 13.28; Cr, 12.10.

trans-Dichloro(1,2-diaminoethane)(I,3-diaminopropane)cobalt(III) Chloride Monohydrate. A modification of the method of Schlessinger⁴ for trans-[Co(en)₂Cl₂]Cl was used. A solution of $CoCl_2 \cdot 6H_2O$ (30 g) in water (90 ml) was added to an equimolar mixture of the diamines (19.1 ml) in 100 ml of water and a vigorous stream of air was drawn through the liquid for 6 hr. The dark red oxidized solution was placed in an evaporating dish and HCl (66 ml, 12 F) was added. The volume was reduced to 100 ml on a steam bath and the green crystals that were obtained on cooling overnight were washed with 2-propanol and ether and air-dried. The mother liquors with added HCl (20 ml, 12 F) were returned to the steam bath for 20 min to obtain a second crop. The total yield was 11.6 g (31%). Anal. Calcd for [Co(en)(tmd)Cl₂]Cl·H₂O: C, 18.90; H, 6.30; N, 17.64; Co, 18.58; Cl, 33.54. Found: C, 18.75; H, 5.98; N, 17.71; Co, 18.30; Cl, 33.20.

trans-Dichloro(1,2-diaminoethane)(1,3-diaminopropane)cobalt-(III) Perchlorate. The mother liquors from the previous preparation were returned to the steam bath for 30 min with 20 ml of 60% HClO₄ added. An additional 10 ml of HClO₄ (60%) was added and the solution was allowed to cool slowly. The green crystals obtained (12 g) were washed and dried as above. Anal. Calcd for [Co(en)-(tmd)Cl₂]ClO₄: C, 16.50; H, 4.95; Co, 16.23; ligand Cl, 19.53. Found: C, 16.93; H, 5.09; Co, 16.45; ligand Cl, 19.30.

The trans-Dichloro(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Cation. The green trans-Cr(en)(tmd)Cl₂⁺ cation was isolated in solution by suspending ca. 150 mg of trans-[Cr(en)(tmd)-Cl₂]ClO₄ in 0.025 F HNO₃. The unreacted solid was filtered from the solution which dripped directly onto the top of an ion-exchange column, which had been prewashed with 1.0 F and then 0.025 F HNO₃. The green band that formed at the top of the resin column was washed with 30 ml of 0.025 F HNO₃ and the green dichloro cation was then eluted with 50 ml of 0.4 F HNO₃ into an ice-cooled flask. The absorption spectrum was recorded immediately and analysis of solutions prepared in this manner (ca. 4 mF in complex) gave Cr:Cl atom ratios of 1:1.94 ± 0.05 (11)⁵ in acceptable agreement with the formula Cr(en)(tmd)Cl₂⁺.

The trans-Dichloro(1,2-diaminoethane)(1,3-diaminopropane)cobalt(III) Cation. The green trans-Co(en)(tmd)Cl₂⁺ cation was isolated in solution by methods analogous to those used for the Cr(III) complex, except that 0.3 F HNO₃ was used for the elution. Analyses of the effluent solutions (ca. 4 mF in complex) gave Co:Cl atom ratios of 1:2.03 \pm 0.03 (19)⁵ in agreement with the formula Co(en)(tmd)Cl₂⁺.

The trans-Chloroaquo(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Cation. The orange trans-Cr(en)(tmd)(OH₂)Cl²⁺ cation was generated in solution by allowing trans-[Cr(en)(tmd)Cl₂]-ClO₄ (ca. 150 mg in 50 ml of 0.1 F HNO₃) to hydrolyze for 2 hr at 40°. The cooled reaction solution was adsorbed on an ion-exchange column which had been prewashed with 2 F and then 0.1 F HNO₃. Elution with 30 ml of 0.6 F, followed by 20 ml of 0.8 F HNO₃, removed the unreacted trans-dichloro cation and the orange chloroaquo cation was eluted with 50 ml of 1.0 F HNO₃. Absorption spectral parameters were measured immediately and analyses of the

(4) G. G. Schlessinger, "Inorganic Laboratory Preparations," Chemical Publishing Co., New York, N. Y., 1962, p 237.

(5) The numbers are the mean plus or minus the standard deviation. The number in parentheses is the number of determinations.

solutions (ca. 2 mF in complex) gave Cr:Cl atom ratios of 1:0.99 \pm 0.09 (6)⁵ in agreement with the formula Cr(en)(tmd)(OH,)Cl²⁺.

The cis-Chloroaquo(1,2-diaminoethane)(1,3-diaminopropane)cobalt(III) Cation. The purple cis-Co(en)(tmd)(OH₂)Cl²⁺ was isolated in solution by allowing trans-[Co(en)(tmd)Cl₂]ClO₄ (ca. 200 mg in 30 ml of 0.1 F HNO₃) to hydrolyze for 5 min at 40°. The cooled solution was treated as outlined for the isolation of trans-Cr(en)(tmd)(OH₂)Cl²⁺. Analysis of the effluent solutions (ca. 3 mF in complex) gave Co:Cl atom ratios of 1:1.04 ± 0.03 (6)⁵ in agreement with the formula Co(en)(tmd)(OH₂)Cl²⁺. Variation in reaction times from 3 to 20 min gave chromatographically isolated solutions with identical absorption spectral parameters, suggesting that the isolated Co(en)(tmd)(OH₂)Cl²⁺ cation is isomerically pure.

The trans-Diaquo(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Cation. The orange trans-Cr(en)(tmd)(OH₂)₂³⁺ cation was generated by allowing ca. 150 mg of trans-[Cr(en)(tmd)Cl₂]ClO₄ to hydrolyze in 50 ml of distilled water for 3.5 hr at 40° before cooling. HNO₃ (6 ml, 1.0 F) was then added and the resulting orange solution was adsorbed on an ion-exchange column which had been prewashed with 2 and 0.1 F HNO₃. The orange band was washed with two 50-ml portions of 1.0 F, followed by 30 ml of 1.25 F HNO₃, and the desired cation was eluted with 1.5 F HNO₃ into an ice-cooled 50-ml flask, discarding the first 10 ml of effluent. The absorption spectrum was measured immediately.

The same complex was formed from *trans*-[Cr(en)(tmd)(OH₂)-(OH)](ClO₄)₂, either by dissolving an accurately weighed amount in 0.6 F HNO₃ and measuring the absorption spectrum or by taking ca. 120 mg in 30 ml of 0.6 F HNO₃ and adsorbing this solution on a cation-exchange resin (prewashed with 2 F and then 0.6 F HNO₃). The orange band was washed with 30 ml of 1.25 F HNO₃ and the cation was eluted with 1.5 F HNO₃ into a 50-ml ice-cooled flask, the first 15 ml being discarded. All three methods gave absorption spectra which were identical in the position of the maxima and minima and molar absorbancy indices.

The cis-Diaquo(1,2-diaminoethane)(1,3-diaminopropane)chromium(III) Cation. The orange cis-Cr(en)(tmd)(OH_2)₂³⁺ cation was prepared by dissolving ca. 150 mg of trans-[Cr(en)(tmd)Cl₂]ClO₄ and 500 mg of mercuric acetate in 50 ml of 0.6 F HNO₃ and leaving the solution at room temperature in the dark for 3 days. The solution was then adsorbed on an ion-exchange column which had been prewashed with 2 F and then 0.6 F HNO₃. The orange band that formed was washed with 40 ml of 1.0 F and 20 ml of 1.25 F HNO₃, and the desired complex was eluted with 50 ml of 1.5 F HNO₃ to give an approximately 3 mF solution.

The cis-Diaquo(1,2-diaminoethane)(1,3-diaminopropane)cobalt(III) Cation. The orange-pink cis-Co(en)(tmd)(OH₂)₂³⁺cation was generated by a method similar to that used for the Cr(III) analog. The effluent solutions were ca. 2 mF in complex.

The trans-Dihydroxo(1,2-diaminoethane)(1,3-diaminopropane)cobalt(III) Cation. The magenta trans-Co(en)(tmd)(OH₂)₂³⁺ cation was prepared from trans-[Co(en)(tmd)Cl₂]ClO₄, either by dissolving an accurately weighed amount in 0.5 F NaOH and measuring the absorption spectrum or by taking ca. 200 mg in 30 ml of 0.025 F HNO₃ and adsorbing this solution on a cation-exchange resin (prewashed with 2 F and then 0.025 F HNO₃). The green band was washed with distilled water until the effluent was neutral. The magenta cation was then eluted with 0.1 F NaOH into a 50-ml ice-cooled flask, the first 20 ml being discarded. Both methods gave identical absorption spectral parameters.

The cis- \Rightarrow trans-Diaquo(1,2-diaminoethane)(1,3-diaminopropane)cobalt(III) Equilibrium Solution. An accurately weighed amount of trans-[Co(en)(tmd)Cl₂]ClO₄ was dissolved in 0.5 F NaOH (25 ml) and left for 3 min before making up to 50 ml with 1.0 F HNO₃. The absorption spectral parameters remained constant after 3 days at room temperature.

An identical spectrum was obtained by leaving a solution of *trans*-[Co(en)(tmd)Cl₂]ClO₄ and excess mercuric acetate in 50 ml of 1.0 F HNO₃ for 3 days at room temperature.

The Tetraaquo(1,3-diaminopropane)chromium(III) Cation. The pink Cr(tmd)(OH₂)₄³⁺ cation was isolated in solution by dissolving ca. 150 mg of *trans*-[Cr(en)(tmd)Cl₂]ClO₄ in 50 ml of 0.6 F HNO₃ and leaving the solution for 3 days at 35°. The cooled solution was adsorbed on an ion-exchange column which had been prewashed with 2 F and then 0.6 F HNO₃. The resulting pink band was washed with 40 ml of 0.8 F HNO₃ and then eluted with 50 ml of 1.0 F HNO₃, the absorption spectrum being recorded immediately.

Kinetic Measurements. For all hydrolysis studies, the cations were chromatographically isolated by elution from ion-exchange resins with HNO_3 . These solutions were allowed to react at the

Hydrolysis Kinetics of Cr(III) and Co(III) Complexes

appropriate temperature in glass-stoppered flasks which were wrapped in Al foil to exclude light.^{6,7} The titrimetric and spectrophotometric procedures followed were the same as those described previously.¹ For both the M(en)(tmd)Cl₂⁺ cations, plots of log $(T_{\infty} - T_t) \nu s$. time $(T_{\infty} = \text{titer for one Cl}^-, T_t = \text{titer at time } t)$ extrapolated back to $T_t =$ 0 at t = 0, indicating that fast-reacting species, such as *trans*-Co(tmd)₂-Cl₂⁺, were absent. Chemical Analyses. Co was determined by decomposing the

Chemical Analyses. Co was determined by decomposing the complexes with ammonium peroxodisulfate solution and spectrophotometrically estimating the Co(II) produced as the thiocyanate complex in 50% aqueous acetone at 620 nm.⁸ Cr and Cl were determined using the methods described previously.¹ Professor A. D. Campbell's laboratory at the University of Otago, Otago, New Zealand, performed the C, H, and N analyses of the solid complexes. All spectrophotometric measurements were made with a Beckman DBG recording spectrophotometer.

Results

The complexes trans-[Cr(en)(tmd)Cl₂]ClO₄ and trans-[Cr(en)(tmd)(OH)(OH₂)](ClO₄)₂ have been prepared as crystalline solids and a one-step synthesis of trans-[Co(en)- $(tmd)Cl_2$ X (X = Cl·H₂O and ClO₄) is described. The desired product, trans-[Cr(en)(tmd)Cl2]ClO4, is unlikely to be contaminated with trans-[Cr(en)₂Cl₂]ClO₄ as Pedersen⁹ has shown that the reaction between ethylenediamine and CrCl₃ 6H₂O in DMSO or dimethylformamide yields only cis- $Cr(en)_2Cl_2^+$. In addition, the X-ray powder photographs of trans-[Cr(tmd)₂Cl₂]ClO₄ (another possible reaction product), trans-[Cr(en)(tmd)Cl₂]ClO₄, and trans-[Cr(en)₂Cl₂]ClO₄ are distinctly different. This, together with a satisfactory elemental analysis (apart from a high C figure) and unique spectral parameters of the parent and hydrolysis products, serves to characterize trans-[Cr(en)(tmd)Cl₂]ClO₄ and distinguish it from other possible reaction products. From acid solutions of trans-[Cr(en)(tmd)Cl₂]ClO₄, the trans-Cr(en)- $(tmd)Cl_2^+$ and trans-Cr(en)(tmd)(OH_2)Cl^{2+} cations have been isolated by ion-exchange techniques and characterized in solution by their visible absorption spectra and Cr:Cl atom ratios. The cis-Cr(en)(tmd)(OH₂)₂³⁺ has been isolated and characterized in a similar manner from acidic solutions of trans-Cr(en)(tmd)Cl₂⁺ containing Hg²⁺, and the trans-diaquo species has been isolated from solutions of trans-[Cr(en)-(tmd)(OH)(OH₂)](ClO₄)₂ in acid. The trans-Cr(en)(tmd)-(OH₂)Cl²⁺ cation hydrolyzes both via chloride release and $\hat{C}r-N$ bond rupture and the $Cr(tmd)(OH_2)_4^{3+}$ cation has been isolated from aged solutions.

From acidic solutions of *trans*- $[Co(en)(tmd)Cl_2]ClO_4$, the *trans*-dichloro and *cis*-Co(en)(tmd)(OH₂)Cl²⁺ cations have been isolated. Although we have evidence for the formation of *trans*-Co(en)(tmd)(OH₂)Cl²⁺, this cation is sufficiently unstable as to preclude its isolation and characterization. Similarly, the *trans*-Co(en)(tmd)(OH₂)₂³⁺ cation could not be isolated although the *trans*-Co(en)(tmd)(OH₂)₂³⁺ cation could not be isolated although the *trans*-Co(en)(tmd)(OH₂)₂³⁺ cations have been characterized. Absorption spectral parameters for the isolated cations are presented in Table I along with similar data for related species.

Hydrolysis Rates of trans- $M(en)(tmd)Cl_2^+$. The hydrolysis of chromatographically isolated trans- $Cr(en)(tmd)Cl_2^+$ in 0.4 F HNO₃ was followed by chloride-release titration and by spectrophotometry. Rate constants were obtained using the relationships described previously.¹ The spectrophotometric data (using both repetitive-scan and fixed-wavelength

(6) R. R. Barona and J. A. McLean, *Inorg. Chem.*, 10, 286 (1971).

Figure 1. Spectral changes in the primary hydrolysis of *trans*- $Cr(en)(tmd)Cl_2^+$ (------) in 0.4 F HNO₃ at 35°. Reading downward at 585 nm (or upward at 390 nm) the reaction times are 0, 20, 40, 80, 120, and 160 min. The final curve (----) is that of *trans*- $Cr(en)(tmd)(OH_2)Cl^{2+}$.

techniques) were analyzed at 390 and 600 nm (these wavelengths correspond to the maximum absorbance difference between parent¹⁰ and *trans*-Cr(en)(tmd)(OH₂)Cl²⁺, Figure 1) with good agreement between the rate constants obtained at both wavelengths and from the chloride-release data.

Similar techniques were used to monitor the hydrolysis of trans-Co(en)(tmd)Cl₂⁺ in 0.3 F HNO₃. Repetitive spectrophotometric scans showed the production of two sets of isosbestic points and the second set (at 380 and 580 nm) was used for analysis of the kinetic data, where cis-Co(en)(tmd)-(OH₂)Cl²⁺ has a_M values of 62.5 and 34.2 M^{-1} cm⁻¹, respectively (Figure 3).¹¹ There was good agreement between the rate constants obtained from the two different wavelengths and from the chloride-release data.

For the Cr(III) complex, the first-order kinetic plots were linear over 2-3 half-lives, but for the Co(III) complex, negative deviation from linearity was observed after 2 half-lives. Point-by-point calculations showed only random fluctuations over the period where linearity was observed. For both complexes, the observed rate constants were independent of the complex ion concentration over a twofold variation in initial concentration. The kinetic data are presented in Table II.

The spectrophotometric scans for the hydrolysis of both *trans*- and *cis*-M(en)(tmd)(OH₂)Cl²⁺ (M = Cr, Co, respectively) (chromatographically isolated in 1.0 F HNO₃) did not hold isosbestic points, and the rate of loss of parent was followed by chloride release only. The first-order rate plots obtained showed negative deviation from linearity after 0.5 half-life and initial slope values were used to obtain the rate constants presented in Table III. As these data are associated with complex reacting systems at high ionic strength, their absolute values should be interpreted with caution.

The energies of activation, E_a , log PZ values and entropies of activation, $\Delta S^{\ddagger}_{298}$, were calculated using the methods described previously.¹ These data are presented in Table IV along with similar data for related systems.

Discussion

Syntheses. The reaction between $CrCl_3 \cdot 6H_2O$, dehydrated

(10) At 390 nm, the parent and daughter have a_M values of 38.2 and 50.4 M^{-1} cm⁻¹, respectively, while at 600 nm the corresponding values are 22.7 and 11.0 M^{-1} cm⁻¹.

(11) At 380 and 580 nm, the a_M values for *trans*-Co(en)(tmd)-Cl₂⁺ are 45.3 and 19.2 M^{-1} cm⁻¹, respectively.

⁽⁷⁾ D. J. MacDonald and C. S. Garner, J. Amer. Chem. Soc., 83, 4152 (1961). (8) R. G. Hughes, J. F. Endicott, M. Z. Hoffman, and D. A.

 ⁽⁸⁾ R. G. Hughes, J. F. Endicott, M. Z. Hoffman, and D. A.
 House, J. Chem. Educ., 46, 440 (1969).
 (9) E. Pedersen, Acta Chem. Scand., 24, 3362 (1970).

 Table I.
 Visible Absorption Maxima and Minima (320-650 nm) of Some Aquo, Chloroaquo-, and Dichloro(diamine)chromium(III) and -cobalt(III) Complexes in Aqueous Acidic Solution at 12-23°

Cation	Acid and concn, F	Min ^a	Max ^a	Min ^a	Max ^a	Min ^a	Max ^a
trans-Cr(en), Cl_{a}^{+b}	HNO.		396	439	453	514	578
	0.1		(34.0)	(22.3)	(22.8)	(8.1)	(24.5)
trans-Cr(en)(tmd)Cl ₂ ⁺ c	HNO3		402		450 she	523	588
-	$0.4 (16)^d$		(41.3 ± 1.2)		(29.6 ± 1.0)	(10.3 ± 1.6)	(24.8 ± 0.7)
trans-Cr(tmd) ₂ Cl ₂ + f	HNO3		398		457 sh	525	596
	0.1-0.6		(38.8)		(24.9)	(8.9)	(25.5)
$trans-Co(en)_2 Cl_2^+ g$	MeOH-H ₂ O		385		450		625
			(43.7)		(25.2)		(34.7)
$trans-Co(en)(tmd)Cl_2 + c$	HNO ₃	394	422		450 sh	536	625
	$0.3(10)^{a}$	(43.9 ± 0.9)	(46.8 ± 0.8)		(43.1 ± 0.7)	(7.7 ± 0.6)	(38.2 ± 0.6)
trans-Co(tmd) ₂ Cl ₂ g	MeOH-H ₂ O		398		.475		(28.2)
$t_{\text{Ham}} C_{\text{r}}(a_{\text{r}}) $ (OII)C12+ b	UNO		(34.8)	170	(29.0)	500	(30.3)
trans-Cr(en) ₂ (OH ₂)Cr ⁻⁰			(45.5)	(23.7)	(24.4)	(15.4)	(20.5)
$trans_Cr(en)(tmd)(OH)(Cl2+ c$	U.2 HNO		387	(23.7)	456	509	545
	$10(7)^{d}$		(513 ± 13)	(268 ± 0.8)	(28.7 ± 0.8)	(187 ± 10)	(211 ± 0.8)
trans-Cr(tmd) (OH) $Cl^{2+} f$	HNO.		384	436	456	506	556
	1.0		(52.5)	(23.3)	(24.9)	(15.7)	(20.6)
trans-Co(en), $(OH_a)Cl^{2+b}$	HClO.	440	442	510			590
	0.012	(34)	(35)	(14)			(35)
cis-Co(en) ₂ (OH ₂)Cl ²⁺ b	HClO ₄		373	435			515
	0.012		(67)	(15)			(84)
cis-Co(en)(tmd)(OH ₂)Cl ²⁺ c	HNO3	358	376	440			522
	$1.0~(6)^{d}$	(62.0 ± 0.7)	(67.5 ± 0.6)	(26.9 ± 0.6)			(52.3 ± 0.5)
trans- $Cr(en)_2(OH_2)_2 \stackrel{3+}{\to} h$	H^+		361	404	442		508 sh
- · · · · · · · · · · · · · ·	1 F NaNO ₃		(39.2)	(20.0)	(29.3)		(22.5)
trans-Cr(en)(tmd)(OH ₂) ₂ ^{s+} c	HNO ₃	1	370	412	449		508 sh
$C_{1}(1, 1)$ (OII.) $3 \pm f$	0.6-1.5 (4)4	•	(46.1 ± 0.8)	(23.6 ± 0.9)	(33.4 ± 0.9)		(21.6 ± 1.6)
trans- $Cr(tmd)_2(OH_2)_2 \sim 7$	HNO_3		308	414	430		512 SN (19.6)
$ais Cr(an)$ (OH) ^{3+}h	0.0-1.3 H+		(43.5)	(20.9)	(28.0)		484
$cis-ci(eii)_2(Oii_2)_2$	$1 F N_2 N \Omega$		(42.5)	(17.0)			(67.0)
cis-Cr(en)(tmd)(OH _a), ³⁺ c	HNO.		370	415			480
	$1.5(3)^{d}$		(42.0 ± 0.4)	(18.9 ± 0.5)			(32.2 ± 0.5)
cis-Cr(tmd) ₂ (OH ₂) ₂ ³⁺ f	HNO ₃		370	420			488
	1.5		(37.8)	(16.1)			(29.8)
$trans-Co(en)_2(OH_2)_2^{3+i}$	HNO₃, 0.05		\sim 340	410	444	492	550
	$1 F \text{NaNO}_3$		(~55)	(32.0)	(35.1)	(19.2)	(32.8)
cis-Co(en) ₂ (OH ₂) ₂ ^{3+ i}	$HNO_{3}, 0.05$		355	410			492
	IF NaNO ₃		(60)	(14.3)			(80.9)
cis-Co(en)(tmd)(OH ₂) ₂ + c	HNO_3		358 SN	418			498
$ais \rightarrow trave Co(an)(tmd)(OH)$ ^{3+}C	1.5 (5) ⁴		(73.7 ± 0.9)	(15.9 ± 2.0)			(73.9 ± 0.0)
$cis = trans-co(eii)(tind)(Oii_2)_2$	10(7)d		(70.2 ± 0.9)	(154 ± 0.5)			(724 ± 0.6)
trans-Co(en)(tmd)(OH) + c	NaOH	324	375	438			522
	0.1-0.5 (4)	(24.0 ± 1.0)	(87.9 ± 1.3)	(19.1 ± 1.1)			(79.5 ± 1.2)
$Cr(tmd)(OH_a)$, ³⁺ f	HNO.	(2 = 2)	380	438	×.		514
	1.0		(26.6)	(8.6)			(28.2)
$Cr(tmd)(OH_2)_4^{3+c}$	HNO,		382	438			514
	$1.0(4)^{d}$		(26.4 ± 1.0)	(8.4 ± 2.6)			(28.0 ± 0.1)
$Cr(en)(OH_2)^{3+j}$	HCIO.		385	433			512
2/4	1.0-3.0		(24.3)	(10.7)			(41.7)

^a In nanometers (± 2 nm for this work). Values in parentheses are the molar absorbancy indices, a_M , defined by $A = \log (I_0/I) = a_M cd$, in M^{-1} cm⁻¹. The data in this work are the mean plus or minus the standard deviation (see footnote d). ^b D. J. MacDonald and C. S. Garner, J. Amer. Chem. Soc., 83, 4152 (1961). ^c This work. ^d The number of individual determinations used to obtain the mean. ^e sh = shoulder. ^f M. C. Couldwell and D. A. House, Inorg. Chem., 11, 2024 (1972). ^g J. Bjerrum, A. W. Adamson, and O. Bostrup, Acta Chem. Scand., 10, 329 (1956); H. Kawaguchi, N. Yano, and S. Kawaguchi, Bull. Chem. Soc. Jap., 42, 136 (1969). ^h F. Woldbye, Acta Chem. Scand., 12, 1079 (1958). ⁱ C. K. Poon and M. L. Tobe, J. Chem. Soc., 1549 (1966); J. Bjerrum and S. E. Rasmussen, Acta Chem. Scand., 6, 1265 (1952). ⁱ D. A. House and C. S. Garner, Inorg. Chem., 5, 840 (1966).

in DMSO,² and an equimolar mixture of 1,2-diaminoethane and 1,3-diaminopropane produces (after the subsequent workup) *trans*-[Cr(en)(tmd)Cl₂]ClO₄ and *cis*-[Cr(en)₂Cl₂]Cl·H₂O, the former being the less soluble. The yields of the *trans*dichloro perchlorate are low, but sufficient material was isolated for the present kinetic study. Conversion of this to the *trans*-hydroxoaquo parallels the bis(1,3-diaminopropane) system.¹ The Co(III) analog has previously¹² been prepared by reacting Co(en)(NH₃)(NO₂)₃ with 1,3-diaminopropane, and material from this source was used in a previous kinetic study.¹³ In this work, the direct air oxidation of an aqueous solution of a Co(II) salt, together with an equimolar mixture of the diamines, followed by subsequent reaction with HCl-HClO₄ was successful in producing *trans*-[Co(en)(tmd)Cl₂]Cl·H₂O and the perchlorate salt.¹⁴ The good agreement between the kinetic data found here and that reported

(12) J. C. Bailar and J. B. Work, J. Amer. Chem. Soc., 68, 232 (1946).

(13) R. G. Pearson, C. R. Boston, and F. Basolo, J. Amer. Chem. Soc., 75, 3089 (1953).
(14) We have also succeeded in preparing the trans-dichloro

(14) We have also succeeded in preparing the *trans*-dichloro complexes $[Co(en)(pn)Cl_2]ClO_4$ and $[Co(pn)(tmd)Cl_2]ClO_4$ by this method.

Table II. First-Order Rate Constants for the Primary Hydrolysis of trans-M(en)(tmd)Cl₂⁺ (M = Cr, Co) in Acidic Solution

Temp, °C	C ₀ ,a mF	$10^{s}k, b$ sec ⁻¹	$10^{5}k(calcd), c$ sec ⁻¹	Methodd	
	(A) tra	$r_{r} = C_{r} (e_{r}) (t_{r} = d) C_{r}^{1} + i_{r} = 0.4$	F HNO ¢		
25.0	(A) 174	$m_3 - Cr(Cn)(tind)Cr_2 = m_0.4$	1 02		
25.0	2 70 2 89	2 58 + 0 18	1.93		
30.0	2./8-3.88	3.58 ± 0.18	3.69	H(2)	
35.0	2.41-4.17	7.04 ± 0.15	6.94	H(2), S(2)	
40.0	2.89-5.32	13.3 ± 0.2	12.8	H(3)	
45.0	3.38-5.92	23.0 ± 1.6	23.0	H(4)	
50.0	3.85-7.39	39.7 ± 1.7	40.8	H(4), S(2)	
	(B) <i>tra</i>	ns-Co(en)(tmd)Cl ₂ ⁺ in 0.3	F HNO, f		
13.8	3.52-5.18	8.31 ± 0.13	8.20	H(5)	
15.08		9.85 ^g		S	
15.5	3.52-4.70	10.5 ± 0.2	10.53		
17.0	3.20	13.3 ± 0.7	13.1	H(1)	
20.0	3.02-4.72	19.8 ± 1.4	$20.\overline{1}$	$H(\overline{7})$	
22.0	4.02	26.9 ± 1.3	26.7	H(1)	
25.0	2.56-7.10	39.6 + 1.2	40.5	H(8) S(2)	
25.0g		43.3 ^g		S	
30.0	4,40	79.9 ± 4.0	79.5		
35.08		150g		S	

^a Initial complex ion concentration. ^b The numbers quoted are the mean plus or minus the standard deviation. Where the number of determinations is ≤ 2 , an error of 5% is assumed. ^c Rate constants calculated using the E_a and log PZ values in Table IV. ^d Method used in monitoring the reaction. H = halide-release titration; S = spectrophotometric. Numbers in parentheses are the number of individual determinations. ^e Corresponding to eq 1. ^f Corresponding to eq 3. ^g R. G. Pearson, C. R. Boston, and F. Basolo, J. Amer. Chem. Soc., 75, 3089 (1953), in 0.1 F HNO₃.

Table III. First-Order Rate Constants for the Formation of Cl⁻ in the Hydrolysis of M(en)(tmd)(OH₂)Cl²⁺ (M = Cr, Co) in 1.0 F HNO₃

 Temp, °C	C ₀ , a mF	10 ^s k,b sec ⁻¹	$10^{5}k(calcd),c$ sec ⁻¹	Method ^d	
	(4	A) trans-Cr(en)(tmd)(OH ₂)	Cl ²⁺		
25.0		_	0.31 ± 0.05		
45.0	1.94-2.61	3.15 ± 0.18	3.15	H(2)	
55.0	1.91-3.00	9.07 ± 0.16	9.06	H(3)	
	((B) cis -Co(en)(tmd)(OH ₂)Cl	2+		
25.0	3.24-6.15	10.3 ± 0.2	10.2	H(3)	
30.0	3.01-3.02	17.2 ± 0.9	17.3	H(2)	
36.0	3.26-4.04	31.8 ± 1.6	31.8	H(2)	

^a See footnotes a-d in Table II.

Table IV. Kinetic Parameters for the Primary and Secondary Hydrolysis of Some $M(AA)_2Cl_2^+$ Cations (M = Cr, Co) in Acidic Solution at 25°

Complex ^a	Acidity, ^b F	$10^{5}k$, sec ⁻¹	E _a , kcal mol⁻¹	log [PZ, (sec ⁻¹)]	$\Delta S^{\ddagger}_{298},$ cal deg ⁻¹ mol ⁻¹
t-Cr(en) ₂ Cl ₂ ⁺ c	0.1	2.25d 7.2 (35°)¢	23.2	12.37	-4
t-Cr(pn), Cl _o + f	0.1	8.14 (35°)			
t-Cr(en)(tmd)Cl ₂ + g	0.4	1.93 7.04 (35°)	23.4 ± 0.3	12.43	-3.6 ± 0.5
$t-Cr(tmd)_2Cl_2+h$	0.1	2.08 7.85 (35°)	24.5	13.26	+0.1
$t-Co(en)_{a}Cl_{a}+i-k$	0.1	3.2	26.2	15.9	+14
$t-Co(pn) Cl_{a}^{+k}$	0.1	6.2	28	$(16.3)^{l}$	$(+14)^{l}$
$t-Co(en)(tmd)Cl_{a}+k$	0.1	43.3	26 (24.0) ¹		
$t-Co(en)(tmd)Cl_{2}^{+}g$	0.3	39.6	24.2 ± 0.3	14.38	$+5.1 \pm 0.5$
$t-Co(tmd)_{2}Cl_{2}+k,m$	H+ ?	5330	21.3	$(14.3)^{l}$	+6.9
t-Cr(en), (OH,)Cl ²⁺ n	0.1	$\sim 0.08d$		•	
t-Cr(en)(tmd)(OH ₂)Cl ²⁺ g	1.0	0.31d	21.9 ± 1	10.54	-12.3 ± 2
t-Cr(tmd) ₂ (OH ₂)Cl ²⁺ h	1.0	0.29d	21.7	10.39	-13.1
t-Co(en), (OH,)Cl ²⁺ o	0.01	0.28			
c-Co(en), (OH,)Cl ²⁺ o	0.01	0.19			
c-Co(en)(tmd)(OH ₂)Cl ²⁺ g	1.0	10.3 ^d	18.8 ± 0.5	9.81	-15.7 ± 1

^a t = trans; c = cis. ^b HNO, unless otherwise stated. ^c D. J. MacDonald and C. S. Garner, J. Inorg. Nucl. Chem., 18, 219 (1961). ^d Rate determined by chloride release only. ^e D. J. MacDonald and C. S. Garner, J. Amer. Chem. Soc., 83, 4152 (1961). ^f R. R. Barona and J. A. McLean, Inorg. Chem., 10, 286 (1971). ^g This research. ^h M. C. Couldwell and D. A. House, Inorg. Chem., 11, 2024 (1972); Inorg. Nucl. Chem. Lett., 7, 947 (1971). ⁱ S. C. Chan, Aust. J. Chem., 20, 595 (1967). ^j S. C. Chan and M. L. Tobe, J. Chem. Soc., 5700 (1963). ^k R. G. Pearson, C. R. Boston, and F. Basolo, J. Amer. Chem. Soc., 75, 3089 (1953). ^l Numbers in parentheses are log PZ or ΔS^{\pm}_{298} values calculated rom data in the original literature. ^m I. R. Jonasson, R. S. Murray, D. R. Stranks, and Y. K. Yandell, Proc. Int. Conf. Coord. Chem., 12, 32 (1969). ⁿ D. J. MacDonald and C. S. Garner, Inorg. Chem., 1, 20 (1962). ^o S. C. Chan, J. Chem. Soc., 5137 (1963).

varlier¹³ (Tables II and IV) suggests that the two different outes give the same material.

Chromium(III) Cations. The green *trans*- $[Cr(en)(tmd)Cl_2]$ -ClO₄ is soluble in dilute HNO₃ at room temperature to give

a green solution which slowly changes to orange-pink. The absorption spectral parameters and ion-exchange properties of the green $Cr(en)(tmd)Cl_2^+$ cation are typical of a *trans*dichloro complex of this type (Table I). The daughter product, trans-Cr(en)(tmd)(OH₂)Cl²⁺, was isolated from aged (ca. 2 half-lives) solutions and characterized by its absorption spectral parameters (which are similar to related cations) and Cr:Cl atom ratios. Spectrophotometric scans during the hydrolysis of acidic solutions of *trans*- $Cr(en)(tmd)Cl_2^+$ held sharp isosbestic points at 405 (40.7), 454 (29.2), and 560 nm $(19.1 M^{-1} \text{ cm}^{-1})$ over 3 half-lives, in good agreement with those predicted if trans- $Cr(en)(tmd)(OH_2)Cl^{2+}$ is the sole product, namely, at 406 (40.5), 454 (29.4), and 562 nm (19.4 M^{-1} cm⁻¹) (Figure 1). This suggests that the primary hydrolysis of *trans*- $Cr(en)(tmd)Cl_2^+$ is similar to that of *trans*- $Cr(tmd)_2Cl_2^+$ and takes place according to the equation

 $trans-Cr(en)(tmd)Cl_2^+ + H_2O \rightarrow trans-Cr(en)(tmd)(OH_2)Cl^{2+} + Cl^-$ (1)

with no evidence for any Cr-N bond rupture paths such as occur during the hydrolysis of *trans*-Cr(AA)₂Cl₂⁺ (AA = en,⁷ AA = pn^6).

However, the secondary hydrolysis step does appear to be complicated by concurrent Cr-N bond rupture and/or isomerization as isosbestic points were not observed for hydrolyzing solutions of *trans*-Cr(en)(tmd)(OH₂)Cl²⁺ in 1.0 F HNO₃. Due to the difficulty of working with low concentrations of the *trans*-chloroaquo cation, the characterization of the products of this reaction was not attempted. Rather, the *cis*- and *trans*-Cr(en)(tmd)(OH₂)₂³⁺ and Cr(tmd)-(OH₂)₄³⁺ cations were generated directly from the *trans*dichloro or *trans*-hydroxoaquo salts.

Hydrolysis of *trans*- $Cr(en)(tmd)Cl_2^+$ in water, followed by acidification and ion-exchange separation, produced the *trans*- $Cr(en)(tmd)(OH_2)_2^{3+}$ cation, presumably *via* the labile *trans*- $Cr(en)(tmd)(OH)Cl^+$ intermediate. The use of neutral solutions apparently avoids the competing Cr-N bond rupture paths observed in the secondary hydrolysis. An identical species (Figure 2) was produced by preparing solutions of *trans*- $[Cr(en)(tmd)(OH)(OH_2)](ClO_4)_2$ in acid, and the spectral parameters are similar to those of related *trans*- $Cr(AA)_2(OH_2)_2^{3+}$ cations (Table I).

Treatment of acid solutions of the *trans*-dichloro species with excess Hg^{2+} produces a Cr(III) cation with ion-exchange properties compatible with a 3+ charge but with an absorption spectrum different from that of the *trans*-diaquo species. The positions of the absorption maxima and minima are similar to those of *cis*-Cr(en)₂(OH₂)₂³⁺ (Table I) and we tentatively assign the *cis*-diaquo configuration to the isolated species (Figure 2). The Hg²⁺ ion not only assists in removing the coordinated chloride but also appears to catalyze the *trans*- \rightarrow *cis*-diaquo isomerization.

Of considerable interest is the nature of the Cr-N bond ruptured intermediate in the reaction

$$Cr(en)(tmd)(OH_2)_2^{3+} + 4H_3O^+ \rightarrow Cr(OH_2)_6^{3+} + enH_2^{2+} + tmdH_2^{2+}$$
 (2)

as this may provide some information as to the kinetic stability of five- or six-membered rings attached to Cr(III). Solutions of *trans*-Cr(en)(tmd)Cl₂⁺ in 0.6 F HNO₃ were allowed to hydrolyze at 35° for 3 days (approximately 4 half-lives for the reaction corresponding to chloride release from *trans*-Cr(en)(tmd)(OH₂)Cl²⁺) and the color changed from green through orange to pink. The major component isolated by ion-exchange separation had absorption spectral parameters corresponding to Cr(tmd)(OH₂)4³⁺ (previously¹

Figure 2. Visible absorption spectra of *cis*- (-----) and *trans*- $Cr(en)(tmd)(OH_2)_2^{3+}(----)$ in 0.6-1.5 *F* HNO₃ at 20-23°.

isolated from *trans*-Cr(tmd)₂(OH₂)₂³⁺) and considerably different from Cr(en)(OH₂)₄³⁺ (Table I). Thus, in *trans*(?)-Cr(en)(tmd)(OH₂)₂³⁺, the five-membered ethylenediamine ring is the kinetically less stable with respect to Cr-N bond rupture, despite the much cited information¹⁵ that complexes with six-membered rings are normally "less stable" than those with five-membered rings.¹

Cobalt(III) Cations. In agreement with previous workers¹³ we find that acidic solutions of green *trans*-Co(en)(tmd)Cl₂⁺ quite rapidly $(t_{1/2} = ca. 30 \text{ min at } 25^{\circ})$ turn purple. The spectral parameters of the chromatographically isolated chloroaquo product did not correspond to those expected¹³ for a trans isomer and the formation of an early and later set of isobestic points in the spectrophotometric scans suggest that the reaction is proceeding according to

trans-Co(en)(tmd)Cl₂⁺
$$\downarrow$$
 trans-Co(en)(tmd)(OH₂)Cl²⁺ + Cl⁻ \downarrow (3)
 \downarrow cis-Co(en)(tmd)(OH₂)Cl²⁺ + Cl⁻

At 25°, the first set of isosbestic points at 407 (45.6), 481 (32.9), and 602 nm (30.8 M^{-1} cm⁻¹) was maintained from 0 to 24 min (almost 1 chloride-release half-life) and a second set at 380 (59.5), 453 (29.0), and 580 nm (31.2 M^{-1} cm⁻¹) was stable from 60 to 360 min.

Attempts to isolate *trans*-Co(en)(tmd)(OH₂)Cl²⁺ by ionexchange chromatography were unsuccessful and only the cis isomer was obtained. Also unsuccessful were attempts to isolate salts of *trans*-Co(en)(tmd)(OH)Cl⁺ using the literature methods^{16,17} for the synthesis of the bis(ethylenediamine) analog.

The spectral parameters of the first formed product(s) of hydrolyzing *trans*-Co(en)(tmd)Cl₂⁺ were estimated at 12, 20, 28, and 36 min at 25° by subtracting out from the observed spectrum the contribution from the *trans*-dichloro species remaining (80, 65, 50, and 38%, respectively). The mean spectrum is shown in Figure 3 and the product(s)-*trans*dichloro isosbestic points so obtained [405 (45), 481 (33) and 602 nm $(31 M^{-1} \text{ cm}^{-1})$] are in satisfactory agreement with the first formed set. The product(s) spectrum is similar in shape to that of *cis*-Co(en)(tmd)(OH₂)Cl²⁺, which suggests

^{(15) (}a) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed, Wiley, New York, N. Y., 1967, pp 29, 163; (b) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 2nd ed, Interscience, New York, N. Y., 1968, p 156.
(16) L. Maintenbaimer, Lucture University, Chem. 422, 215.

⁽¹⁶⁾ J. Meisenheimer, Justus Liebigs Ann. Chem., 438, 217 (1924).

⁽¹⁷⁾ C. G. Barraclough, R. W. Boschen, W. W. Fee, W. G. Jackson, and P. T. McTigue, *Inorg. Chem.*, 10, 1944 (1971).

Figure 3. Visible absorption spectra of trans-Co(en)(tmd)Cl₂⁺ -) (0.3 F HNO₃), cis-Co(en)(tmd)(OH₂)Cl²⁺ (----) (1.0 F (HNO₃), cis-Co(en)(tmd)(OH₂)₂³⁺ (---) (1.5 F HNO₃), and first formed product(s) ($\cdots \cdots \cdots$) (0.3 F HNO₃) of hydrolyzing trans-Co(en)(tmd)Cl₂⁺ at 25°. Observed isosbestic points in this hydrolysis are marked + (first set) and \square (second set).

that, like the *trans*-Co(en)₂Cl₂⁺ system,¹⁸ the parent hydrolyzes directly to form a mixture of the cis- and transchloroaquo products.

As there is general similarity between the spectral parameters of trans-Co(en)₂Cl₂⁺ and trans-Co(en)(tmd)Cl₂⁺ (Table I), we would expect a parallel behavior for the related trans-chloroaquo ions. Assuming that trans-Co(en)(tmd)- $(OH_2)Cl^{2+}$ has a minimum near 510 nm with a molar absorbancy index of $14 \pm 5 M^{-1} \text{ cm}^{-1}$, we calculate from the molar absorbancy indices of *cis*-Co(en)(tmd)(OH₂)Cl²⁺ and the product(s) spectrum (52.0 and 39.5 M^{-1} cm⁻¹, respectively, at 510 nm) that about $66 \pm 5\%$ cis-chloroaquo is produced in the primary hydrolysis step.

The second set of isosbestic points is probably composite and due to a combination of reactions 4 as these are maintained for approximately 3 half-lives for the chloride-

(4)

release path from cis-Co(en)(tmd)(OH₂)Cl²⁺ and do not correspond to intersections of any of the spectral curves shown in Figure 3. Nevertheless, the rate constants for hydrolyzing trans-Co(en)(tmd)Cl₂⁺ obtained spectrophotometrically at the wavelengths defined by this second set are in good agreement with those obtained from chloriderelease titrations.

Treatment of *trans*-Co(en)(tmd) Cl_2^+ with excess Hg²⁺ in acidic solution and subsequent ion-exchange separation of the products produced a 3+-charged cation with spectral parameters compatible with those expected for cis-Co(en)- $(tmd)(OH_2)_2^{3+}$ (Figure 3). Attempts to prepare trans-Co-(en)(tmd)(OH_2)³⁺ by base hydrolysis of the *trans*-dichloro species (to produce *trans*-Co(en)(tmd)(OH)₂⁺) and acidification gave solutions with spectral parameters differing from those of the cis-diaquo species, probably corresponding to nearly trans-Co(en)(tmd)(OH₂)₂³⁺. These changed (within 15 min at 35°) to those corresponding to the cis- \Rightarrow transdiaquo equilibrium mixture obtained from the trans-dichloro species and excess Hg²⁺, prior to ion-exchange separation. From the absorption spectral parameters of nearly trans-

(18) M. E. Baldwin, S. C. Chan, and M. L. Tobe, J. Chem. Soc., 4637 (1961).

diaguo species and those of the *cis*-diaguo and the *cis* \Rightarrow trans-diaguo equilibrium mixture, we calculate using expres-

$$A_{c+t}/d = \epsilon_c (C_0 - [t]) + \epsilon_t [t]$$
⁽⁵⁾

sion 5^{19} that there is $5 \pm 3\%$ (mean of seven wavelengths) trans-diaguo species in the equilibrium mixture. This is comparable to the <2% trans-diaquo species observed in the $cis \Rightarrow trans$ -diaquobis(ethylenediamine)cobalt(III) equilibrium mixture.²⁰

The relative stability of the trans-dihydroxo and the rapid isomerization of the trans-diaquo species are in agreement with the observations that the trans- \rightarrow cis-Co(tmd)₂(OH₂)₂³⁺ isomerization has a half-life of ca. 1 min at 25° (i.e., 1450 times faster than that of the corresponding bis(ethylenediamine) system), whereas the related trans- \rightarrow cis-Co(tmd)₂- $(OH)_2^+$ isomerization is only 13 times faster than that of the bis(ethylenediamine) system.²¹

Kinetic Data. The first-order rate constants for the reaction

$$trans-Co(AA)(BB)Cl_2^+ + H_2O \rightarrow cis- + trans-Co(AA)(BB)(OH_2)Cl^{2+} + Cl^-$$
(6)

increase in the order AA = BB = en; AA = BB = pn; AA = en, **BB** = tmd; AA = BB = tmd, with $10^5 k = 3.2, 6.2, 39.6$, and 5330 sec⁻¹, respectively, at 25° (Table IV). The corresponding data for the Cr(III) analogs, hydrolyzing according to eq 1, are $10^5 k = 7.2 \pm 0.6$, 8.14 ± 0.18 , 7.04 ± 0.15 , and 7.85 ± 0.15 0.17 sec^{-1} , respectively, at 35° . The rate constants for the Cr(III) systems appear to be almost independent of the nature of the coordinated diamine and the reactions are much more stereoretentive than those of the Co(III) analogs. Only with AA = BB = en (or pn), where Cr-N bond rupture is observed, is the direct production of cis-Cr(AA)(BB)(OH₂)-Cl²⁺ detected.^{1,6,7}

cis- and trans-diacidocobalt(III) complexes of the above type are believed to aquate primarily via a dissociative mechanism and the stereochemical changes produced reflect the generation of two different configurations of the pentacoordinated intermediate.^{22,23} For cis complexes, the trigonal-bipyramidal intermediate is stabilized directly, the entropy of activation is low, and little stereochemical change is observed. For trans complexes, however, the trigonal bipyramid can only be achieved by rearrangement from the square pyramid; the rate of reaction is slower and the entropy of activation higher than observed for their cis analogs, and considerable stereochemical change can occur.²⁴

The present data suggest that the trans-Cr(AA)(BB)Cl₂⁺ complexes (Table IV) aquate via a dissociative mechanism with little rearrangement of the square-pyramidal intermediate as the rate constants are similar, the stereochemical change is small, and the entropies of activation are negative or almost zero.25

The driving force causing the rate increase of Co(III) complexes containing methyl-substituted diamines has been cor-

(22) See ref 15a, Chapter 4.
(23) C. S. Garner and D. A. House, Transition Metal Chem.,
6, 59 (1970), especially pp 202-208.

(24) M. L. Tobe, *Inorg. Chem.*, 7, 1260 (1968).
(25) W. W. Fee, W. G. Jackson, and P. D. Vowles, *Aust. J.* Chem., 25, 459 (1972).

⁽¹⁹⁾ A_{c+t} is the absorbance of a cis \rightleftharpoons trans equilibrium mixture with a total Co(III) concentration of C_0 in a cell of d-cm path length, ϵ_c and ϵ_t are the molar absorbancy indices of the cis- and nearly trans-diaquo ions and [t] is the unknown transdiaquo ion concentration

⁽²⁰⁾ J. Bjerrum and S. E. Rasmussen, Acta Chem. Scand., 6, 1265 (1952).

⁽²¹⁾ I. R. Jonasson, R. S. Murray, D. R. Stranks, and Y. K. Yandell, Proc. Int. Conf. Coord. Chem., 12, 32 (1969).

related with steric interaction between the released chloride and the number of axial methyl groups,²⁶ while the rate increase due to ring expansion has been attributed to steric interaction of boat or twist-boat ring conformations.^{1,27} The rate increase in the primary hydrolysis of *trans*-Co(en)-(tmd)Cl₂⁺ relative to *trans*-Co(en)₂Cl₂⁺ can also be accounted for on this basis and the positive value for the entropy of activation supports Tobe's theory,²⁴ as considerable stereochemical change is observed.

Registry No. [Cr(en)(tmd)Cl₂]ClO₄, 36904-25-3; cis-[Cr-

(26) M. D. Alexander, *Inorg. Chem.*, 5, 2084 (1966).
(27) M. C. Couldwell and D. A. House, *Inorg. Nucl. Chem.* Lett., 7, 947 (1971). $\begin{array}{l} (en)_2Cl_2]Cl\cdot H_2O, \ 20713-30-8; \ [Cr(en)(tmd)(OH_2)OH] ClO_4, \\ 36904-26-4; \ [Co(en)(tmd)Cl_2]Cl\cdot H_2O, \ 36900-74-0; \ [Co(en)(tmd)Cl_2]ClO_4, \ 36904-27-5; \ trans-Cr(en)(tmd)(OH_2)Cl^{2+}, \\ 36904-28-6; \ cis-Co(en)(tmd)(OH_2)Cl^{2+}, \ 36904-29-7; \ trans-Cr(en)(tmd)(OH_2)_2^{3+}, \\ 36904-31-1; \ cis-Co(en)(tmd)(OH_2)_2^{3+}, \ 36904-32-2; \ trans-Co(en)(tmd)(OH_2)_2^{3+}, \\ 36904-34-4; \ Cr(tmd)(OH_2)_4^{3+}, \ 36965-94-3. \end{array}$

Acknowledgments. We acknowledge with thanks funds from the New Zealand Universities Grants Committee for the purchase of instruments used in this research. M. C. C. thanks British Petroleum (N. Z.) Ltd., for the receipt of a scholarship.

Contribution from the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Trigonal Field Splitting in Tris(ethylenediamine) Complexes. Evidence from the Electron Paramagnetic Resonance Spectrum of Ru(en)₃³⁺

J. A. STANKO,* H. J. PERESIE, R. A. BERNHEIM, R. WANG, and P. S. WANG

Received July 6, 1972

The epr spectrum of the tris(ethylenediamine)ruthenium(III) complex, $Ru(en)_3^{3+}$, was measured at 4°K, diluted in single crystals of $[Rh(en)_3Cl_3]_2$ ·NaCl·6H₂O and in powders of $[Co(en)_3]Br_3 \cdot 3H_2O$, and employing K-band and X-band frequencies, respectively. The spectrum in both media can be described by an axial spin Hamiltonian with $g_{\perp} = 2.640 \pm 0.022$ and $g_{\parallel} = 0.330 \pm 0.007$, defined with respect to the threefold symmetry axis of the complex. Interpretation of these g factors in terms of the theory of axial distortions for a low-spin d⁵ electronic configuration shows the ground electronic state to be $E'(^2A_1)$ and yields a value of the trigonal field splitting parameter, K, of -413 cm⁻¹. The observed magnitude and sign of this latter quantity are discussed in terms of the known structure of the complex, crystal field theory predictions, and a comparison with the value for the same quantity in other tris(ethylenediamine) complexes.

Introduction

For a transition metal ion immersed in a crystal field of predominantly octahedral symmetry, but with a superimposed component of trigonal (D_3) symmetry, the lower lying, triply degenerate (t_{2g}) set of d orbitals is expected to split into a nondegenerate a_1 orbital and a doubly degenerate set of e orbitals. Neglecting mixing with the higher energy set of e (e_g) orbitals, the energies of the split t_{2g} orbitals can be parametrized *via* crystal field theory as E(e) = K and $E(a_1) =$ -2K, where K, the trigonal field splitting parameter, characterizes the strength of the field.¹ For K positive, the a_1 orbital lies lowest.

For a number of trigonal complexes² and trigonal sites in ionic crystals³ the magnitude and sign of K can be estimated from the splitting of excited electronic states as measured by polarized crystal spectra. However for the tris(ethylenediamine) complexes thus far examined,⁴⁻⁷ the observed broadband splittings have been so slight, and their direct interpre-

(1) T. S. Piper and R. L. Carlin, J. Chem. Phys., 33, 1208 (1960), and references therein.

- (2) T. S. Piper and R. L. Carlin, J. Chem. Phys., 35, 1809 (1961).
 (3) D. S. McClure, Solid State Phys., 9, 399 (1959).
 (4) S. Yamada and R. Tsuchida, Bull. Chem. Soc. Jap., 33, 98
- (4) S. Yamada and R. Tsuchida, Bull. Chem. Soc. Jap., 33, 98 (1960).
- (5) A. G. Karipedes and T. S. Piper, J. Chem. Phys., 40, 674 (1964).
- (6) R. Dingle and C. J. Ballhausen, Kgl. Dan. Vidensk. Selsk., Mat.-Fys. Medd., 35, 1 (1967).
- (7) R. Dingle and R. A. Palmer, Theor. Chim. Acta, 6, 249 (1966).

tation complicated by the apparent additional presence of vibronic contributions to band intensities, that estimates of the magnitude of K obtained therefrom may still have a high degree of uncertainty attached to them. Moreover the sign of K for these complexes, determined in this manner, even seems to be controversial by comparison with the sign deduced from circular dichroism studies, both natural and magnetically induced.^{8,9}

In favorable cases, such as for metal ions with degenerate ground states in octahedral fields, electron paramagnetic resonance is an additional method which can provide a direct, and precise, determination of the strengths of axial components of a crystal field. The low-spin d⁵ Ru³⁺ ion has been shown to be an excellent probe in this regard and has been used extensively to characterize the axial field strengths in a number of well-known type complexes and ionic crystals including the tris(acetylacetonate) complex, ¹⁰ corundum, ¹¹ the hexaammine¹² and halopentaammine complexes, ¹³ several garnets, ^{14,15} several phosphine complexes, ¹⁶ some tris-

- (8) A. J. McCaffery, S. F. Mason, and R. E. Ballard, J. Chem. Soc., 2883 (1965).
- (9) R. L. Russell and B. E. Douglas, Inorg. Chim. Acta, 3, 426 (1969).
 - (10) H. S. Jarrett, J. Chem. Phys., 27, 1298 (1957).
 (11) S. Geschwind and J. P. Remeika, J. Appl. Phys., 33, 3705
- (1962). (12) J. H. E. Griffiths, J. Owen and I. M. Ward, *Proc. Roy. Soc.*,
- (12) J. H. E. Griffiths, J. Owen and I. M. Ward, *Proc. Roy. Soc.*, Ser. A, 219, 526 (1963).
 - (13) J. A. Stanko, Ph.D. Thesis, University of Illinois, 1966.